|
. . . In ten years' time, how many people could xenotransplant help
worldwide?
Estimates vary. It depends on many factors. If you look at the number of
people who are waiting for transplants and will not get one, you'll come up
with a fairly large number -- in the many thousands. Those will be patients
who are waiting for a transplant, but will die while waiting. But there are
many who don't even get on those lists, because the lists are very selective.
. . .
What would be a transplant heaven for people like yourself, the scientists
and the surgeons? What would you like to be delivering to patients in the
future?
I would think that, if xenotransplantation were to really be successful, it
would be equivalent to giving a transplant from a member of the same species
today, which has, of course, achieved great success. The need for
xenotransplants is really paradoxical. It occurred because the field of
transplantation has itself been so successful. Thirty years ago, no one would
have predicted how successful transplantation as a field was going to become.
And we've actually, by that success, led to our own limitation in terms of
number of organs available. So today, one of the major limitations to the
field of transplantation is the lack of available donor organs.
What is the prize is at the end of this? . . .
It's very important to realize that none of us are interested in just extending
death. What we really want to do is prolong useful life. So not everybody
who's dying will qualify for a xenotransplant. It will only be those patients
who have met the criteria that they have a useful life to return to if the
failure of one organ can be overcome.
How would organs on demand revolutionize transplantation procedures?
One of the problems in transplantation today is that frequently, it has to be
done in a great hurry, under very suboptimal conditions, because you're dealing
with an organ that's available from a cadaver donor. A cadaver donor is a
patient who's brain-dead because of a tragic accident. And certainly, not
everyone who dies can be a donor. It's only those unfortunate persons who are
killed in such a way, in a car accident, or motorcycle accident, that their
brain is dead, but their organs are still functioning normally. Now, in those
conditions, you have to do everything very, very quickly. And certainly, you
don't have time to do the kind of testing and preparation of the recipient that
would be optimal.
In the case of a xenotransplant, you would have time in your favor. It would
all be elective. You'd be able to select the time and exactly the right
preparative state of the recipient, be sure that the recipient doesn't have a
cold, and other things that you just can't avoid when you're dealing with
something where you have only a few hours.
The immunosuppressive drugs that transplant patients currently have to live
out their life on, are they, to some extent, a double-edged sword for the
patient?
Immunosuppression has been the real answer to this field. That's really how we
have made all the progress that has been made over the past few decades. But
everyone who uses immunosuppressive drugs, both the patients and the doctors,
realize that there are problems associated with immunosuppression. The whole
concept of immunosuppression means suppressing a system that is present to
avoid infections. You have an immune system to avoid infections and pathogens.
By suppressing the immune system in order to not reject the transplant, you are
also suppressing the ability to fight those infections, and, in some cases, to
fight tumors.
So, when using immunosuppression, you are always on the fence. If you don't
give enough immunosuppression, you risk losing your transplant to rejection.
If you give too much immunosuppression, you risk a complication, such as
infection or cancer. There's no question that, if we could get away from
immunosuppression and still be able to accept a transplant, we would be in a
much better state.
So is it part of the ideal world for transplant and xeno that you have a
universal donor organ?
The idea of not having to use immunosuppression is called tolerance. Tolerance
means acceptance of a tissue or an organ as though it were self, instead of
non-self. Now, this is of great importance and benefit, even for transplants
within a species, from one human being to another. We've been working hard on
that now for many years. And we now have been successful in inducing this kind
of tolerance for transplants within the species. We did it first in mice, and
we've then subsequently done it in pigs, and most recently in non-human
primates. And we have animals who are totally mismatched, just as mismatched
as you and I, who have now accepted organs -- in particular, kidneys -- for
over five years, and have not had any immunosuppression since Day 28. So this
idea of inducing tolerance, making the immune system look at the transplant as
though it were self, is something that can now be done.
And we are working very hard on it in the case of transplants within a species,
because we think it will have benefit for patients to be off of
immunosuppressive drugs. But even more important will be the use of this
technology for xenotransplantation, because . . . the amount of
immunosuppression that's needed is so great, that I'm afraid many patients, or
perhaps all patients, would succumb to the complications. Therefore, I think
the idea of inducing tolerance is even more appealing, and will be of even
greater importance, when we talk about xenotransplantation. And I think it
will be possible.
Based on your animal experiments, what would happen to a patient if you were
trying to induce tolerance in a pig to human transplant?
At this point in our research, we have now gotten to a point where we believe
we can induce tolerance at the T-cell level. But there are two types of
immunity that are important for transplantation. There's the T-cell, and then
there's also the antibody-producing cell. And at this stage, we have not yet
been able to induce this tolerance for antibody mediated rejection. . . .
Practically speaking, if in the future a human was to accept a pig organ,
and you wanted to induce tolerance to that organ in the human recipient, what
would you have to do?
The way we induce tolerance right now, in terms of organs between individuals
of the same species, is by the use of bone marrow transplantation to induce the
tolerance. And we know that if a bone marrow transplant is accepted, the
recipient becomes tolerant to any other tissue or organ from the same donor.
That's been shown many times in experimental animals, but it's also been shown
in human beings. There are patients who have had a bone marrow transplant, in
general for leukemia or some other hematologic malignancy, and who have then
been cured by a bone marrow transplant, usually from a sibling. Some of these
patients have subsequently developed renal failure, and have required a kidney
transplant. If they have remained on good enough terms with the same sibling,
that sibling was willing to give them the kidney. In those cases, you don't
need any immunosuppression. Those patients will accept the kidney from that
same donor who gave the bone marrow, without further immunosuppressive drugs.
So we know that this can work. Essentially, a bone marrow transplant changes
the immune system of the recipient, and it makes the recipient look at the
donor as though it were self. . . .
For a full bone marrow transplant, as I just described, you really want to get
of the recipient's entire immune system, and then replace it with donor bone
marrow. For leukemia, for example, you want to get rid of every last leukemic
cell. But we now know that you don't have to get rid of the whole host's
immune response in order to get tolerance from a bone marrow transplant. If
you can get just a small percentage of the bone marrow of the donor to survive
in the recipient, you will get the full tolerance. So the advantage of that is
that you don't have to use ablation to get rid of the recipient's own marrow
completely.
You want them to coexist.
And that's what we call mixed chimerism. It's a mixture; it's both recipient
and donor bone marrow cells that survive, and that mixture leads to
tolerance.
So in the future, if this worked, the patient who was planning to receive
the pig organ would have their bone marrow partially destroyed?
The idea would be that, prior to the transplant of the organ, or at the same
time, to also provide a source of donor cells from the bone marrow, or perhaps
from the peripheral blood, perhaps from the thymus. We're not sure yet what
will be the optimal source of those donor cells to induce this kind of
tolerance, but we're working very hard on that in the laboratory. The idea
would be that prior to, or at the same time as the organ transplant, a source
of donor cells would also be given, which would induce this kind of tolerance
at the T-cell level. And we actually have evidence that we're able to do that
right now.
What sort of survival rate have you had with animal experiments to test this
tolerance out?
For closely related species, such as baboon to synamologous monkey, we now have
animals that have accepted organs after this kind of mixed chimerism procedure
for over two years. So for a xenograft between closely related species, we
already have this working. But when you go to more distant species, such as
pig into primate, then in addition to the T-cell immunity, which is what the
mixed chimerism overcomes, you also have these natural antibodies that are a
major problem. And at this point, we've been able to avoid the antibodies by
absorbing them, or by using tricks to prevent their activity, such as stopping
the complement from reacting with these antibodies.
But we have not yet been able to prevent these antibodies from coming back. We
have not yet been able to induce tolerance at the
B-cell level. The B-cells are what make antibody. And so for the xenograft
from a distant species, such as pig to primate, to be fully accepted, we have
to overcome both the T-cell and the B-cell forms of immunity.
You've developed a particular type of pig, which you believe will work
better in the transplants of the future. How did you to discover or find the
animal?
Over the past 25 years, we have bred a line of miniature swine, as what we
believe to be the most appropriate donor for xenotransplantation. These
miniature swine get to about 200 to 300 pounds when they're fully grown. . . .
Domestic swine, ordinary pigs that you'll see in the market, get to over 1,000
pounds when they're fully grown. They're huge; they're not just cute little
animals. They're actually very, very big animals, and many people don't
realize that. They're too big to be donors of an organ to most human beings.
And they're too big after they're maybe a year old.
The miniature swine are just the right size to be donors for a human being, and
the donor organ could be matched in size to any human being, from a newborn
baby to a very large adult. So one of the reasons for choosing the miniature
swine was exactly that -- that it could be an ideal donor for
xenotransplantation. There are also many other advantages to miniature swine
for use as experimental animals, because they can be housed in a reasonable
animal facility, whereas domestic swine really can't.
Do you want to make those animals transgenic? Do you want to introduce
human genes into them to make the organs more compatible with us?
The use of transgenic animals has major advantages to the field of
transplantation, because you can either change or eliminate or add genes that
will make the donor more compatible with the recipient. But you will never
change enough genes to make them identical, so you will always have to, in
addition, either suppress the immune response, or tolerize the immune response.
We clearly want to make the job easier, and we intend to continually modify the
donor pig, to make it more and more ideal. So my expectation would be that,
with time, more genes will be added, and other genes removed from the genome of
the ideal donor pig to make it more and more compatible, with a human
recipient. But it will never be identical.
As the miniature swine you work with stand at the moment, have any of them
been genetically modified?
The genetic modification in our miniature swine has been done naturally, not by
transgenesis. It's been done by selective inbreeding. These animals have been
inbred by brother-sister matings, in a very controlled fashion, typing for the
antigens that are important to transplantation. And I've done that now over a
25-year period. So these are really the only large animals that you can do
this kind of reproducible transplantation experimentation in, because they all
have identical genes.
And at the moment, what has that inbreeding produced? Has it suppressed
what our bodies' defense system recognizes as animal within those pigs?
No. The idea of having an inbred donor, and the reason that would be important
for transplantation to a human being, for example, is that all of the animals
are identical. Therefore, if you work out a procedure to induce tolerance to
one donor, that tolerance would also be available for an organ from another
donor. You could use cells from one animal, and then use a heart or a kidney
from another. If that organ were to fail, the recipient would still be
tolerant to a new organ from that same inbred donor animal.
So you're trying to create by a natural selection process that you've
managed -- pigs that are so close to each other that they're almost as good as
clones?
They are essentially clones. They are essentially identical twins. And
we've known this has been possible for mice for many, many years. There are
numerous strains of inbred mice, and we call them syngeneic. It really means
they're like identical twins. And the problem has been that inbred animals, up
until now, have only been available for very small animals, like mice and rats.
But now we have this line of miniature swine, which are similarly inbred. And
the most recent animals now have a coefficient of inbreeding, which is what we
call the similarity of over 90 percent. With these animals, if you exchange
skin grafts among them, they don't reject. So from the point of view of
transplantation, these animals are identical.
In the course of doing that, have there been any other benefits that have
come to light? I'm thinking of cross-species infections. Is that an issue in
the last couple of years?
Quite by chance, one of the lines of miniature swine that we chose to inbreed
apparently has also a much diminished, if not absent, transmissibility of the
PERV virus. And this was a surprise to me, but, in fact, a very nice surprise.
. . .
Three PERV viruses have been identified as transmissible to humans. Do your
pigs possess them?
I believe that all pigs have copies of these viruses, but that they don't all
transmit these viruses. That is how I understand it. . . .
There are those who feel that we do not have the right to use animals in
this way for our own benefit, to prolong our own lives. What do you say to
that?
. . . The only really closely related species that would be a potential donor
for transplants to a human being would be chimpanzees or apes, both of which
are endangered species. And I don't think any of us, or anyone in his or her
right mind would consider using such animals as donors for transplantation. .
. . But when we're talking about using pigs as a donor . . . our societies have
determined that it's all right to use pigs as a source of food. And it's hard
for me to understand how it would be unreasonable to use a heart from a pig,
for example, to save someone's life, if it's all right to use the pigs to
produce bacon and pork sausages.
Are there also animal welfare issues that spin out of this, if in the future
we will intervene in the lives of these animals, and make them live in very
unusual ways in order to benefit us?
I believe firmly in humane treatment of animals. I think there's a big
difference between humane treatment of animals and "animal rights." I think we
have determined that it is reasonable to use animals to sustain human life, and
I think that that does not change in any way the need to always treat animals
humanely. We would not want any of our animals to suffer, and I think that
everyone working in this field feels the same way.
But the public will have to accept, will they not, that animals will have to
live in unusual conditions, so that they can be absolutely clean and
pathogen-free, in order to donate their organs for us?
Donor animals, donor pigs for transplants, will definitely have to be
maintained in very clean environments, in order to avoid the possibility of
carrying an infection. But the conditions can still be quite humane and quite
reasonable. Much more reasonable, I'm sure, than many situations in which
animals are raised as a source of food.
And likewise, the public will have to accept that we will intervene in the
lives of these animals at very crucial stages, won't we, in the fertilization,
the ovulation, the birth of these animals. We will have to manage and farm
them specifically for their organs, won't we? It's not farming in the
traditional sense, is it?
It's not farming in the traditional sense. But I don't see anything about it
that would be inhumane, or which would cause the animal to suffer. I would not
condone such a practice.
What do you say to those people who feel that we are tinkering with a
fundamental keystone in the arch of our whole immune system -- the barrier
between us and the animals -- and that we are risking too much?
I think there is always risk associated with any new innovation. And the real
balance has to be between the benefit and the risk. Now unfortunately at the
moment, because transplantation has not yet been successful, we can't really
measure the benefit. We can assess some of the risks. I think we have to be
very mindful of that; I think we have to be very careful about it. I think we
have to be very wary of doing anything that could cause a problem either to the
recipient, or to the community. Fortunately, there are many people who are
worried about that, and who are being very careful about the safeguards they
are putting on research, as well as potential human experimentation in this
regard. The FDA, for example, has some very stringent guidelines, which I
support fully.
But I don't think the idea of having no risk is one which will lead to
progress. I think we have to be willing to accept some level of risk and
minimize that risk. And I have to return always to the fact that patients are
dying every day waiting for organs. And the benefit, if we can make this work
appropriately, will be enormous to relieving human suffering.
When do you think that xenotransplantation might become a treatment
available to patients?
My own feeling is that we should not consider xenotransplantation into human
beings until we have a reasonable expectation that it will be successful. And
by that, I mean when the experiments we're doing of a pig into non-human
primates have been as successful as transplants between individuals of the same
species, and have shown no signs of rejection over periods of hundreds of days.
And we're not at that stage yet.
But what I can say is that I have not seen any problems yet along the way which
seem to me to be insurmountable. . . . The problems we're facing are problems
of the immune system, the inability to prevent these antibodies from returning.
I'm confident we will overcome that problem. Right now we have already
overcome the problem of the T-cell immunity.
I really think that if we overcome the problem of the antibodies, we'll be
very close to success. When that will happen, I cannot yet predict, but I do
feel it will happen. And I think at that point, we'll start to have the kind
of results in our pig to non-human primate studies that would lead me to say
we're ready to go to the patient.
Do you think you have to have the courage to fail in all this? In the
history of transplantation and its experimentation, people died at the
beginning.
You always have to have that courage to the possibility of failure to make
progress, and the patients have to have that courage as well. I've always felt
that I should work on the most important problem that I really think will be
solvable. And to me, that's what xenotransplantation is.
How much do we actually know about how a pig organ would perform if it was
transplanted into a human?
The organs of other species are every bit as good as the organs of humans in
maintaining the functions of life, with exception, perhaps, of the brain. But
certainly, we've already seen that a pig kidney can support the life of a
non-human primate for a matter of months. . . . We know the same is true for a
heart from a pig. So, physiologically, we believe that these will work. The
reason these organs have failed has been the immune system, not a failure
physiologically.
Do we know that if I had a pig organ in my chest and I ran for the bus,
would it respond to my adrenaline and beat faster?
Yes, we believe that that would be no different from a heart transplant from
one human being to another. The requirements for demand on the heart appear to
be satisfied just by the heart itself, because when you do a heart transplant
from one human being to another, you don't hook up anything else but the
vessels. You don't hook up the nerves, and yet, that heart functions normally.
There's no reason to expect that that would not be true for a pig heart, and,
indeed, in those experiments so far where that has been done, the heart has
functioned normally.
So, we think that, that from a physiological point of view, many of the organs
of the pig will be just as good as those or another human being. For example,
the pancreas, which carries the islet cells that produce insulin and is needed
to cure diabetes -- we know that the pig islet cells are fully compatible with
producing an insulin that sustains human beings with diabetes, because it's
been used for years. So we would expect that another tissue, like islet cells,
would give normal function in the human being.
The liver is perhaps a problem, because the liver makes so many proteins, that
some of them are bound not to work properly in a human being. But if you think
into the future, you could also conceive of changing those protein structures
in a pig by the use of transgenics, so even that I don't think is
impossible.
A pig is unlikely to live more than 15 years. How could I be sure, if I had
one of its organs, that it wouldn't expire before me?
The lifetime of an individual is not necessarily indicative of the lifetime of
its individual parts. We know that many human beings die at the age of 80 with
perfectly normal, functioning livers, pancreas, kidneys, lungs, even hearts.
So it's not clear that, because the lifespan of a pig is generally thought to
be about 15 years, that each of its organs would fail in 15 years. However,
from what I've told you about our procedure of using inbred animals and
tolerance, we think that if we have evidence that an organ were aging
prematurely, so to speak, we could replace it with an organ from another
identical animal, and maintain the patient by another xenotransplant.
home · four patients · the risks · animal welfare · the business · the regulators
discussion · faqs · video · chronology · interviews
synopsis · tapes & transcripts · press · credits · carlton's organ farm
FRONTLINE · pbs online · wgbh
web site copyright WGBH educational foundation
|